Maths - Geometry

Shapes

Trianglex

Pythagorean Theorem

Pythagorean Theorem (Rectangle Triangle)

\(c^2=a^2+b^2 \Leftrightarrow c=\sqrt{a^2+b^2}\)

Thales Theorem

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Thales Theorem (Homothety)

\(\Large\frac{AD}{AB}=\frac{AE}{AC}=\frac{DE}{BC}\)

Circles

Circle Equation

\((x-a)^2+(y-b)^2=r^2 \Leftrightarrow \sqrt{(x-a)^2+(y-b)^2}=r\)

Diameter

\(D=2 \times r\)

Circumference

\(C=2 \times \pi \times r\)

Area

\(A=\pi \times r^2\)

Ellipses

Ellipse Equation

\((\frac{(x-a)}{Hrad})^2+\frac{(y-b)}{Vrad})^2=1 \Leftrightarrow \sqrt{(\frac{(x-a)}{Hrad})^2+\frac{(y-b)}{Vrad})^2}=1\)

Semi-major Diameter

\(Da=2 \times a\)

Semi-minor Diameter

\(Db=2 \times b\)

h

\(\frac{(a-b)^2}{(a+b)^2}\)

Exentricity e

\(\frac{\sqrt{a^2-b^2}}{a}\)

Area

\(A=\pi \times a \times b\)

Popular approximation

(5%) \(2 \pi \sqrt{\frac{a^2+b^2}{2}}\)

Ramanujan first approximation

(0.005%) \(\pi (3 (a+b) - \sqrt{(3a+b)(a+3b)})\)

Ramanujan second approximation

(0.0000005%) \(\pi (a+b)(1+\frac{3h}{10+\sqrt{4-3h}}\)

Series approximation

(0.0000…%) \(\pi (a+b)(1 + \frac{h}{4} + \frac{h^2}{64} + \frac{h^3}{256} + \frac{25h^4}{16384} + ... )\)

Complex Numbers

Definition

Euler formula

\(e^{i\pi}=-1 \iff \frac{(i \pi)^0}{0!} + \frac{(i \pi)^1}{1!} + \frac{(i \pi)^2}{2!} + \frac{(i \pi)^3}{3!} + \dots = -1\)

\(\cos(x)=\frac{e^{ix}+e^{-ix}}{2}\)

\(\sin(x)=\frac{e^{ix}-e^{-ix}}{2i}\)

\(\cos(x)^2=\frac{cos(2x)+1}{2}\)

\(\sin(x)^2=\frac{1-cos(2x)}{2}\)

\(\cos(x)^3=\frac{cos(3x)+3cos(x)}{4}\)

\(\sin(x)^3=\frac{3sin(x)-sin(3x)}{4}\)

Linearizations Example

\(cos(x)^2 = \left( \frac{e^{ix} + e^{-ix}}{2} \right)^2 \\ = \frac{(e^{ix})^2 + 2e^{ix}e^{-ix} + (e^{-ix})^2}{2^2} = \frac{e^{2ix}+2e^{ix}e^{-ix}+e^{-2ix}}{4} \\ = \frac{e^{2ix} + 2 + e^{-2ix}}{4} = \frac{2(\frac{e^{2ix} + e^{-2ix}}{2}) + 2}{4} \\ = \frac{2cos(2x)+2}{4} = \frac{cos(2x)+1}{2}\)

\(sin(x)^2 = \left( \frac{e^{ix} - e^{-ix}}{2i} \right)^2 \\ = \frac{(e^{ix})^2 - 2e^{ix}e^{-ix} + (e^{-ix})^2}{2^2 * i^2} = \frac{e^{2ix}-2e^{ix}e^{-ix}+e^{-2ix}}{-4} \\ = \frac{e^{2ix} - 2 + e^{-2ix}}{-4} = \frac{2(\frac{e^{2ix} + e^{-2ix}}{2}) - 2}{-4} \\ = \frac{2cos(2x)-2}{-4} = \frac{1-cos(2x)}{2}\)

Complex definition

\(\sqrt{i} = -1\) and \(\frac{d}{dt} e^t = e^t\) then \(\frac{d}{dt} e^{it} = i*e^{it}\)

Complex number

Real Part

Imaginary Part

\(z = a + ib\)

\(a\)

\(ib\)

number

\(z = \frac{\sqrt{3}}{2} + \frac{1}{2} i\)

modulus

\(|z| = \frac{\sqrt{3}}{2}^2 + \frac{1}{2}^2 = 0.75 + 0.25 = 1\)

argument

\(arg(z) = \frac{\pi}{6}\) \((cos(\frac{\pi}{6})=\frac{\sqrt{3}}{2}\), \(sin(\frac{\pi}{6})=\frac{1}{2})\)

trigo

\(z = mod*(cos(arg)+i*sin(arg)) = cos(\frac{\pi}{6}) + i*sin(\frac{\pi}{6})\)

polar

\(z = mod*e^{i*arg} = e^{i*\frac{\pi}{6}}\)

conjug

\(\overline{z} = \frac{\sqrt{3}}{2} + -\frac{1}{2} i\)

Transformations

Rotation

  • center \(\Omega(\omega)\)

  • angle \(\theta\)

Translation

  • vector \(u\)

Homothety

  • center \(\Omega(\omega)\)

  • ratio \(k = \frac{kb}{ka}\)

Similarity

  • center \(\Omega(\omega)\) (single invariant point, resolve \(s(\omega)=\omega\))

  • angle \(\theta = Arg(a)\)

  • ratio \(k = |a|\)

Rotation of center \(\Omega(\omega)\) and of angle \(\theta\) then Homothety of center \(\Omega(\omega)\) and of ration \(k\)

Example

Similarity of \(\left[ \begin{array}{l} s: \mathbb{C} \rightarrow \mathbb{C} \\ \quad z \rightarrow (1-i\sqrt{3})z + 2i \end{array} \right]\)

1. Center: \(s(\omega) = \omega \Leftrightarrow (1-i\sqrt{3})\omega + 2i = \omega \\ \qquad \qquad \Leftrightarrow \omega-(i\sqrt{3})\omega + 2i = \omega \\ \qquad \qquad \Leftrightarrow (i\sqrt{3}\omega - 2i = 0 \\ \qquad \qquad \Leftrightarrow \omega = \frac{2i}{i\sqrt{3}} = 2\)

2. Ratio: \(k=|1-i \sqrt{3}| = \sqrt{1^2 + (\sqrt{3})^2} = \sqrt{1+3} = 2\)

3. Angle: \(\theta = arg(1-i \sqrt{3}) = arg(2 * (\frac{1}{2} - i \frac{\sqrt{3}}{2})) = arg(2 * cos(-\frac{\pi}{3}) + i sin(-\frac{\pi}{3})) = 2e^{i* (-\frac{\pi}{3})}\)

Matrices

Definition

Matrix

\(A = \left( \matrix{ a_{11} & a_{12} & \dots & a_{1p} \cr a_{21} & a_{22} & \dots & a_{2p} \cr \vdots & \vdots & \ddots & \vdots \cr a_{n1} & a_{n2} & \dots & a_{np} \cr} \right) \quad \left. \begin{array}{l} dimension \\ order \\ size \end{array}\right\} n \times p\)

Matrix

Exemple

Square

\(\left( \matrix{ 1 & 2 \cr 3 & 4 \cr} \right)\)

Line

\(\left( \matrix{ 1 & 2 & 3 & 4 \cr} \right)\)

Column

\(\left( \matrix{ 1 \cr 2 \cr 3 \cr 4 \cr} \right)\)

Null

\(\left( \matrix{ 0 & 0 \cr 0 & 0 \cr} \right)\)

Diagonal

\(\left( \matrix{ 1 & 0 \cr 0 & 2 \cr} \right)\)

Unit (Id)

\(\left( \matrix{ 1 & 0 \cr 0 & 1 \cr} \right)\)

\((A+B)^n = \sum\limits_{k=0}^{n} \binom{n}{p} A^{n-k}B^k\) where \(\binom{n}{p} = \frac{n!}{k!(n-k)!}\)

Operations

Matrix Addition (\(A+B\))

The two Matrices must have the same shape

alaways commutative (\(A+B=B+A\))

\(\left( \matrix{ 1 & 2 & 3 \cr 4 & 5 & 6 \cr} \right) + \left( \matrix{ 7 & 8 & 9 \cr 10 & 11 & 12 \cr} \right) = \left( \matrix{ 1+7 & 2+8 & 3+9 \cr 4+10 & 5+11 & 6+12 \cr} \right) = \left( \matrix{ 8 & 10 & 12 \cr 14 & 16 & 18 \cr} \right)\)

Matrix Multiplication (\(A \times B\))

The first Matrix width must have the same size as the second Matrix height

usually not commutative (\(A \times B \neq B \times A\))

\(\left( \matrix{ 1 & 2 & 3 \cr 4 & 5 & 6 \cr} \right) \times \left( \matrix{ 7 & 8 \cr 9 & 10 \cr 11 & 12 \cr} \right) = \left( \matrix{ 1*7+2*9+3*11 & 1*8+2*10+3*12 \cr 4*7+5*9+6*11 & 4*8+5*10+6*12 \cr} \right) = \left( \matrix{ 58 & 64 \cr 139 & 154 \cr} \right)\)

Scalar Multiplication (\(n \times B\))

The first Matrix width must have the same size as the second Matrix height

alaways commutative (\(n \times B=B \times n\))

\(3 \times \left( \matrix{ 7 & 8 \cr 9 & 10 \cr 11 & 12 \cr} \right) = \left( \matrix{ 3*7 & 3*8 \cr 3*9 & 3*10 \cr 3*11 & 3*12 \cr} \right) = \left( \matrix{ 21 & 24 \cr 27 & 30 \cr 33 & 36 \cr} \right)\)

Matrix Power (\(A^n\))

\(A^0 = Id(A) = \left( \matrix{ 1 & 0 & \dots & 0 \cr 0 & 1 & \dots & 0 \cr \vdots & \vdots & \ddots & \vdots \cr 0 & 0 & \dots & 1 \cr} \right)\)

\(A^n = A \times A \times \dots \times A\)

Matrix Inverse (\(A^{-1}\))

\(Mn(\mathbb{R})\) is all the square matrices of order n

\(\forall A \in Mn(\mathbb{R}), \exists A^{-1} \iff \exists B | A \times B = B \times A = Id(A), B = A^{-1}\)

Matrix Division (\(\frac{A}{B}\))

\(\exists B^{-1} \iff \frac{A}{B} = A \times (1/B) = A \times B^{-1}\)

Gaussian Elimination

Transform a system in another similar one (with the same solutions) as a Triangular matrix (easier to resolve).

We have our initial system

\(\left\{ \begin{array}{l} x+2y+2z = 2 \\ x+3y-2z = -1 \\ 3x+5y+8z = 8 \end{array}\right. \begin{array}{l} (L1) \\ (L2) \\ (L3) \end{array}\)

We then use L1 like a pivot and we eliminate x in L2 and L3

\(\left\{ \begin{array}{l} x+2y+2z = 2 \\ \qquad y-4z = -3 \\ \qquad -y+2z = 2 \end{array}\right. \begin{array}{l} (L1) \\ (L2 \leftarrow L2 - L1) \\ (L3 \leftarrow L3 - 3L1) \end{array}\)

Finally, we use L2 like a pivot and we eliminate y in L3

\(\left\{ \begin{array}{l} x+2y+2z = 2 \\ \qquad y-4z = -3 \\ \qquad \quad -2z = -1 \end{array}\right. \begin{array}{l} (L1) \\ (L2) \\ (L3 \leftarrow L3 + L2) \end{array}\)

Resolution

\(\begin{array}{l} (L3) \\ (L2) \\ (L1) \end{array} \left. \begin{array}{l} -2z = -1 \iff z= \frac{1}{2} \\ y-4z=-3 \iff y-2=-3 \iff y=-1 \\ x+2y+2z=2 \iff x-2+1=2 \iff x=3\end{array}\right.\)

Sarrus Method

Cramers rule

Resolve a System

\((S) \quad \left\{ \begin{array}{l} ax + by = s \\ cx + dy = t \end{array}\right.\) (We need as many unknowns as lines)

We have \(A = \left( \matrix{ a & b \cr c & d \cr} \right), B = \left( \matrix{ s \cr t \cr} \right), X = \left( \matrix{ x \cr y \cr} \right)\)

\((S) = A \times X = B, X = A^{-1} \times B \iff \exists A^{-1}\) (1 solution)

Exemple

\((S) \quad \left\{ \begin{array}{l} 3x + 4y = 1 \\ 5x + 7y = 2 \end{array}\right. \quad A = \left( \matrix{ 3 & 4 \cr 5 & 7 \cr} \right), B = \left( \matrix{ 1 \cr 2 \cr} \right), X = \left( \matrix{ x \cr y \cr} \right)\)

\(A^{-1} = \left( \matrix{ 7 & -4 \cr -5 & 3 \cr} \right)\)

\(X = A^{-1} \times B = \left( \matrix{ 7 & -4 \cr -5 & 3 \cr} \right) \times \left( \matrix{ 1 \cr 2 \cr} \right) = \left( \matrix{ -1 \cr 1 \cr} \right)\)

\(x=-1, y=1\)

https://www.youtube.com/watch?v=rowWM-MijXU